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Abstract

In this paper, I thoroughly derive the renormalization group (RG) flows
for the 2D XY model starting from first principles. I begin with the concept
of vortices in the 2D XY model and proceed to establish dualities with
Coulomb gases and the Sine-Gordon equation. By considering topological
excitations (vortices) and their interactions, and mapping these to well-
known equivalent models, I make explicit the connection to Coulomb gas
partition functions and Sine-Gordon field theory. Finally, I extract the RG
flow equations that describe the behavior of the coupling constants as the
system is viewed at larger length scales. In the appendices, I provide every
intermediate step and derivation in full detail, with no steps omitted.

Road to the Main Results

1. XY Model and Vortices: The 2D XY model Hamiltonian is

HXY = −J
∑
⟨i,j⟩

cos(θi − θj).

At low temperatures (T ), it can be approximated by a free Gaussian theory in
terms of a continuous field θ(x). Vortices appear as topological defects with phase
winding. A single vortex configuration costs energy proportional to ln(L/a).

2. Coulomb Gas Representation: Vortices in the XY model can be represented as
charges in a 2D Coulomb gas. This maps the XY partition function onto that of
a neutral plasma of point charges with logarithmic interactions.

3. Sine-Gordon Relation: Introducing a cosine perturbation in a scalar field theory
(the Sine-Gordon model) creates particle-antiparticle pairs analogous to vortices.
By identifying parameters, one shows that the XY model’s vortex sector is equiv-
alent to a Sine-Gordon theory at a certain coupling.
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4. RG Flow Equations: Integrating out short-distance degrees of freedom (small
vortex-antivortex pairs) leads to the Kosterlitz-Thouless RG equations:

dK−1

dℓ
= 4π3y2,

dy

dℓ
= (2− πK)y,

whereK = βJ and y is the vortex fugacity. The KT transition occurs atKc = 2/π.
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1 Establishing the XY Model

The 2D XY model is characterized by planar spins S⃗i = (cos(θi), sin(θi)) on a
lattice as seen in Figure 1. Its Hamiltonian is:

HXY = −J
∑
⟨i,j⟩

S⃗i · S⃗j = −J
∑
⟨i,j⟩

cos (θi − θj).

The partition function is:

Z =

∫ N∏
i=1

dθi
2π
e−βHXY .
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At low temperature, we approximate for small angle differences:

−βHXY ≈ −K
2

∫
d2x(∇θ)2 + . . . where K = βJ.

Vortices are topological configurations in the XY model. Consider a vortex con-
figuration defined by:

ϕ(r, θ) = qθ.

A vortex has the property: ∮
∇⃗ϕ(r, θ) · d⃗l = 2πq.

In polar coordinates:

∇⃗ϕ = θ̂
q

r
.

The energy of a single vortex configuration of core size a and system size L is:

H =
J

2

∫ L

a

2πrdr

(
q2

r2

)
= q2Jπ ln

L

a
.

For a single vortex of charge q = 1, the cost grows logarithmically with the system
size.

Figure 1: A vortex configuration in the 2D XY model. The spin orientation angle
θ winds by 2π around the center.

In Cartesian coordinates (x, y), a single vortex configuration can be written as:

ϕ(r) = q arctan
y

x
, ∇⃗ϕ(r) = qẑ × r⃗

r2
.

For a vortex-antivortex pair:

∇⃗ϕ(r⃗) = ẑ ×
(

r⃗ − r⃗+
|r⃗ − r⃗+|2

− r⃗ − r⃗−
|r⃗ − r⃗−|2

)
.
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At large distances r, the field due to a pair decays as ∼ 1
r2
.

Since ∇2 log(r) = 2πδ(r), vortex configurations can be thought of as 2D Coulomb
charges, with the vortex acting like a charge sourcing a logarithmic potential.

2 Establishing Relation with the Coulomb Gas

Consider the Gaussian integral representation:

Z[J ] =

∫
Dϕ exp

(
−1

2

∫
dx ϕ[−K∇2]ϕ+

∫
dx J(x)ϕ(x)

)
.

After completing the square and integrating out ϕ, we get:

Z[J ] = Z[0] exp

{(
1

2

∫
dxdy J(x)Ô−1(x− y)J(y)

)}
,

where Ô = −K∇2.

We can identify the two-point function:

⟨ϕ(x)ϕ(y)⟩ = Ô−1(x− y).

For the XY model at low temperature:

⟨θ(r)θ(0)⟩ = − 1

2πK
ln
r

L
.

A configuration of vortices ϕ =
∑

imi log |x⃗− x⃗i| leads to:

H =
J

2

∫
d2x(∇ϕ)2 =

∑
i,j

mimjπJ ln
|x⃗i − x⃗j|

a
.

This maps onto a 2D Coulomb gas of charges mi = ±1 with a logarithmic inter-
action:

ZXY ≈
(∫

Dϕe
−K

2

∫
d2x(∇ϕ)2

)(∑
N

yN

(N/2)!2

∫ ∏
i

d2xi exp

(
4π2K

∑
i<j

mimjC(x⃗i − x⃗j)

))
,

where

C(x⃗i − x⃗j) =
log |x⃗i − x⃗j|

2π
, y = e−βϵ

0
± .

Hence, the vortex sector of the XY model can be represented as a 2D Coulomb
gas of ±1 charges with fugacity y.
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3 Establishing the Sine-Gordon Relation

The Sine-Gordon model:

βHsg =

∫
d2x

[
K ′

2
(∇φ)2 − g cos(φ)

]
.

Expanding eg cosφ in a series:

eg cosφ =
∞∑
N=0

(g/2)N

N !

∫ N∏
i=1

d2xi
∑

{mi=±1}

exp

(
i
∑
i

miφ(x⃗i)

)
.

Gaussian averaging over φ gives a similar Coulomb gas representation:

⟨φ(x⃗)φ(y⃗)⟩ = − 1

2πK
ln |x⃗− y⃗|.

By matching parameters, one can show that the Sine-Gordon model at small g
maps onto the same Coulomb gas representation as the XY vortices:

Zsg

Z0
sg

= ZQ, for which Z0
sg is without perturbation

and now we can identify:

KXY =
1

8π2Ksg

.

Thus, the XY model, Coulomb gas, and Sine-Gordon model are all dual represen-
tations of each other.

4 Deriving the RG Flows

The scaling dimension of a vortex operator eimϕ in the Gaussian model is πKm2.
For a single vortex (m = 1), if πK < 2, vortices are relevant operators under RG;
if πK > 2, they are irrelevant.

Integrating out short-distance vortex-antivortex pairs generates flow equations for
K and y. The standard Kosterlitz-Thouless RG equations are:

dK−1

dρ
= 4π3y2,

dy

dρ
= (2− πK)y,

where ρ is the RG scale (log of length scale).

These flow equations show a line of fixed points at y = 0 and K > 2/π (low-
temperature, quasi-long-range order) and a critical point at K = 2/π where the
system undergoes the Kosterlitz-Thouless transition. For K < 2/π, vortices pro-
liferate, destroying quasi-long-range order.

An invariant combination under RG is x2 − π4y2, where x = K−1 − π/2. This
indicates hyperbolic flow trajectories in the (K, y) plane as seen in Figure 2.
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Figure 2: Representative RG flows for the 2D XY model, depicting the stable fixed
points and the Kosterlitz-Thouless transition line. The flow lines show how the
coupling constants evolve as one changes the length scale. They also describe a
phase transition driven by the unbinding of vortex-antivortex pairs. For K > 2/π,
the system exhibits quasi-long-range order (spin correlations decay as a power law),
while for K < 2/π, vortex proliferation leads to exponential decay of correlations
and disordered phase.

A Appendix: Complete Derivations

In this appendix, I present every step of the derivations mentioned in the main
text, without skipping any intermediate reasoning.
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A.1 Important Math Proof

Mini math prove involving a Gaussian

⟨exp{ix}⟩ =
∫
dx exp{ix} exp

{
− x2

2σ2

}
1√
2πσ2

=

∫
dx√
2πσ2

exp

{[
ix− x2

2σ2

]}
=

∫
dx√
2πσ2

exp

{[
1

2σ2

[
2σ2ix− x2

]]}
=

∫
dx√
2πσ2

exp

{[
−1

2σ2

[
−2σ2ix+ x2

]]}
=

∫
dx√
2πσ2

exp

{[
−1

2σ2

[
−2σ2ix+ x2 + σ4 − σ4

]]}
=

∫
dx√
2πσ2

exp

{
− 1

2σ2

[
[x− σi]2 + σ4

]}
=

∫
dx√
2πσ2

exp

{[
−1

2σ2
[x− σi]2 − σ2

2

]}
=

∫
dx√
2πσ2

exp

{[
− x2

2σ2

]}
︸ ︷︷ ︸

1

exp

{[
−σ

2

2

]}

= exp

{
−1

2
σ2

}
.

Keep in mind we are allowed to shift a contour integrations if the function holo-
morphic, and it is for a gaussian since

f(z) = exp

{(
iz − z2

2σ2

)}
is analytic everywhere and no poles exists; and f(z) goes to 0 on real axis as
|z| → ∞. Thus x → x + iσ is valid. For a gaussian distribution with a mean of
zero the variance is

V ar(X) =
〈
X2
〉
− ⟨X⟩2︸︷︷︸

mean squared

V ar(X) =
〈
X2
〉
,

so we can say ⟨x2⟩ = σ2 and

⟨exp{ix}⟩ = exp

{
−1

2

〈
x2
〉}
.

A.2 A1. XY Model Setup and Vortex Definition

The 2D XY model is defined on a 2D lattice with spins:

S⃗i = (cos(θi), sin(θi)).
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The Hamiltonian is:

HXY = −J
∑
⟨i,j⟩

S⃗i · S⃗j = −J
∑
⟨i,j⟩

cos(θi − θj).

At low temperatures, where θi varies slowly between neighboring sites, we can go
to a continuum limit. Let the lattice spacing be a, and define a continuous field
θ(x). For small (θi − θj):

cos(θi − θj) ≈ 1− (θi − θj)
2

2
.

For a 2D continuum:

−βHXY ≈ −K
2

∫
d2x (∇θ)2, where K = βJ.

For high temperature note that,

e−βHXY =
[
1 +K cos (θi − θj) +O(K2)

]
.

A vortex configuration is defined by:∮
∇θ · dℓ = 2πq,

where q is an integer (vortex charge). For a vortex at the origin with q = 1:

θ(r, ϕ) = ϕ,

in polar coordinates (r, ϕ).

The gradient of this configuration is:

∇θ = ϕ̂

r
.

In Cartesian coordinates (x, y), a single vortex can be written as:

θ(x, y) = arctan
(y
x

)
.

Differentiating:
∂θ

∂x
=

−y
x2 + y2

,
∂θ

∂y
=

x

x2 + y2
.

Thus:

∇θ =
(

−y
x2 + y2

,
x

x2 + y2

)
= ẑ × r

r2
.

The energy of a single vortex configuration (core size a, system size L) in the
Gaussian approximation:

H =
J

2

∫
d2x(∇θ)2.

Since (∇θ)2 = 1
r2

for a vortex

H =
J

2

∫ L

a

2πr dr
1

r2
= Jπ ln

L

a
.
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A.3 A2. Vortex-Antivortex Pair and Field Configuration

For a vortex at r+ and an antivortex at r−, the combined field is:

θ(r) = arctan
y − y+
x− x+

− arctan
y − y−
x− x−

.

Now to look into
∇⃗ϕ = ∇⃗ϕ+ + ∇⃗ϕ−.

We’ve seen

∇⃗ϕ+ = qẑ× r⃗

r2

= qẑ× ∇⃗ ln |r⃗|

= qẑ× r̂
1

r

= qẑ× r⃗

r2

So the gradient:

∇θ(r) = ẑ ×
(

r− r+
|r− r+|2

− r− r−
|r− r−|2

)
.

∇⃗ϕ = −
[
∇⃗× ẑ ln

|r⃗ − r⃗+|
|r⃗ + r⃗+|

]
Say that r+ = −d

2
and r− =

d

2
, also keep in mind binomial expansion (1 + x)−1 =

1− x+ x2 +O(x3) see that

ln
|r⃗ − d⃗/2|
|r⃗ + d⃗/2|

= ln

√
(r⃗2 − r⃗ · d⃗+ (d⃗)2√
(r⃗)2 + r⃗ · d⃗+ d⃗/4

=
1

2
ln

(r⃗)2 − r⃗ · d⃗+ (d⃗)2/4

(r⃗)2 + r⃗ · d⃗+ d⃗/4

=
1

2
ln

(r⃗)2 − r⃗ · d⃗
(r⃗)2 + r⃗ · d⃗

=
1

2
ln

(
r2

r2

[
1− r⃗ · d⃗/r2

1 + r⃗ · d⃗/r⃗2

])
=

1

2
ln
[(

1− r⃗ · d⃗/r2
)(

1− r⃗ · d⃗/r2
)]

=
1

2
ln

1− 2r⃗ · d⃗
r2

+

(
r⃗ · d⃗
r2

)2


≈ 1

2
ln

[
1− 2r⃗ · d⃗

r2

]
.
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For a vortex-antivortex pair:

∇⃗ϕ = ∇⃗ϕ+ + ∇⃗ϕ− = ẑ ×
(

r⃗ − r⃗+
|r⃗ − r⃗+|2

− r⃗ − r⃗−
|r⃗ − r⃗−|2

)
≈ ẑ× q

(
(r⃗ − r⃗+)

r2

(
1 +

2r⃗ · r⃗+
r2

+O
(

1

r2

))
− (r⃗ − r⃗−)

r2

(
1 +

2r⃗ · r⃗−
r2

+O
(

1

r2

)))
= ẑ×

(
r⃗+ + r⃗−
r2

+
2r⃗ [r⃗ · (r⃗+ + r⃗−)])

r4
+O

(
1

r2

))
∼ 1

r2
.

At large distances r, this decays as 1/r2, ensuring no net circulation far away.

A.4 A3. Coulomb Gas Representation

Z[J ] =

∫
Dϕ exp

{
−1

2

∫
dxϕ

[
−K∇2ϕ

]
+

∫
dxJ(x)ϕ(x)

}
.

Say Ô ≡ −K∇2, ϕJ =
1

2
ϕÔÔ−1J +

1

2
ϕÔÔ−1J , and [ϕ, J ] = 0 so

1

2
ϕÔÔ−1J =

1

2
JÔÔ−1ϕ.

Then

Z[J ] =

∫
Dϕ exp

{
−1

2

∫
dxϕÔϕ+

∫
dxJϕ

}
=

∫
Dϕ exp

{
−1

2

∫
dxϕÔϕ+

∫
dxJϕ+

1

2
JÔ−1J − 1

2
JÔ−1J ]

}
=

∫
Dϕ exp

{
−1

2

∫
dx
(
ϕ− Ô−1J

)
Ô
(
ϕ− Ô−1J

)
+

1

2

∫
dxJÔ−1J

}
=

∫
Dη︸︷︷︸

No Jacobian factor

exp

{
−1

2

∫
dxηÔη +

1

2

∫
dxJÔ−1J

}
.

For which ϕ→ ϕ− Ô−1J as the physics remains the same. So now the correlation
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function can be rewritten as Z[J ] = Z[0] exp

{[
1

2

∫
dxdyJ(x)Ô−1J(y)

]}
.

⟨ϕ(x)ϕ(y)⟩ = ∂2 lnZ[J ]

∂J(x)∂J(y)

∣∣∣∣
J=0

=
∂

∂J(y)

[[
1

2

∫
dxdyδ(x− x′)Ô(x− y)J(y) +

1

2

∫
dxdyJ(x)Ô(x− y)δ(y − x′)

]]∣∣∣∣
J=0

=
∂

∂J(y)

[[
1

2

∫
dxdyδ(x− x′)Ô(x− y)J(y) +

1

2

∫
dxdyJ(x)Ô(x− y)δ(y − x′)

]]∣∣∣∣
J=0

=

[
1

2

∫
dxdyδ(x− x′)Ô−1(x− y)δ(y − y′) +

1

2

∫
dxdyδ(x− y′)Ô−1(x− y)δ(y − x′)

]∣∣∣∣
J=0

=

[
1

2
Ô−1(x′ − y′) +

1

2
Ô−1(y′ − x′)

]
= Ô−1(x′ − y′).

So now we see the relation

Ô ⟨ϕ(x)ϕ(y)⟩ = δ(x− y)

⟨θ(r)θ(0)⟩ = −1

2πK
ln r/L = G(r)

where L is the UV cutoff and G(r) is a green’s function. Also in general we know
∇2 log(r) = 2πδ(r), so through superposition

ϕ =
∑
i

mi log |x⃗− x⃗i|

which is the potential due to a set of vortices. mi = topological charge. It also
follow that ∇2ϕ = 2π

∑
imiδ

2(x⃗− x⃗i) For analogy purposes we will be looking at
the low temperature regime,

βHXY,low =
K

2

∫
d2x(∇θ)2

=
K

2

∫
d2x

[
(∇⃗φ)2 − 2∇⃗φ ·

(
∇⃗× ẑϕ

)
+
(
∇⃗× ẑφ

)2]
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The coupled term equals zero

−2

∫
d2x∇⃗φ ·

(
∇⃗× ẑϕ

)
= 2

∫
d2x

[
∂ϕ

∂y

∂φ

∂x
− ∂ϕ

∂x

∂φ

∂y

]
= 2

[
∂ϕ

∂y
φ

∣∣∣∣− ∫ d2x
∂φ

∂x

∂2ϕ

∂y2
−
∫
d2x

∂ϕ

∂x

∂φ

∂y

]
= 2

[
∂ϕ

∂y
φ

∣∣∣∣− ∫ d2x
∂φ

∂x

∂2ϕ

∂y2
− ∂ϕ

∂x
φ

∣∣∣∣− ∫ d2x
∂φ

∂y

∂2ϕ

∂x2

]

= 2

 ∂ϕ∂yφ
∣∣∣∣︸ ︷︷ ︸

0

−
∫ ∫

dxdy2π
∑
i

mi
∂φ

∂x
δ(y − yi)−

∂ϕ

∂x
φ

∣∣∣∣︸ ︷︷ ︸
0

+

∫ ∫
d2x2π

∑
i

mi
∂φ

∂y
δ(x− xi)

]

= 2

−∫ dy2π
∑
i

mi φ|︸︷︷︸
0

δ(y − yi) +

∫
dx2π

∑
i

mi φ|︸︷︷︸
0

δ(x− xi)


= 0.

because we are using periodic integrands, the linear terms are equal to zero.

Thus,

βHXY,low =
K

2

∫
d2x⃗

(
∇⃗θ
)2

=
K

2

∫
d2x

[
(∇⃗ϕ)2 +

(
∇⃗× ẑφ

)2]
=
K

2

∫
d2x

[
(∇⃗ϕ)2 +

(
∇⃗φ
)2]

.

So

βH =
K

2

∫
d2x

(
∇⃗ϕ
)2

+ ..

= −K
2

∫
d2xϕ∇2ϕ+ ..

= −K
2

∫
d2x

(∑
i

mi log |x⃗− x⃗i|

)(
2π
∑
j

δ(x⃗− x⃗j)

)
+ ..

= −2π2
∑
<i,j>

mimjK log |x⃗i − x⃗j|
2π

+ ..

which is analogues to 2D coulomb gas

−π2
∑
i<j

mimjK
log |x⃗− x⃗j|

2π
+
∑
i=j

βϵo + ..
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as the interaction coupling breaks down near the core; the self-interaction portion
will just be labeled as core energy ϵo.
Say,

C (x⃗i − x⃗j) ≡
log |x⃗i − x⃗j|

2π
, Coulomb interaction

βH =
K

2

∫
d2x

(
∇⃗φ
)2

+
∑
i

βϵ0mi
− 4π2

∑
i<j

mimjC (x⃗ix⃗j)K

So,

ZXY ≈
∫
Dϕ exp

{
−K

2

∫
d2x(∇φ)2

}
︸ ︷︷ ︸

Zspin wave

∑
mi

∫ ∏
i

d2x exp

{
−
∑
i

βiϵ
0
mi

+ 4π2K
∑
i<j

C (x⃗i − x⃗j)

}
︸ ︷︷ ︸
ZQ, grand canonical partition function of 2D gases with Coulomb interaction

mi = ±1,
∑

imi = 0

We can also say y ≡ e−βϵ
0
±

ZQ =
∑
N

1(
N

2

)2

!

∫ ∏
i

d2x⃗iy
N exp

{
4π2K

∑
i<j

mimjC (x⃗i − x⃗j)

}

where

(
N

2

)
! are the permutations of + and − charges. Now we have the coulomb

gas paritition fuction abstracted from the XY model.

A.4.1 Maxwell Connections

To map the picture between connection Sine-gordon (broadly Maxwell’s equation)
and coloumb gas we need a voritce interaction term

∇⃗θ = ∇⃗ϕ− ∇⃗× (z⃗ψ).

So

∇⃗× ∇⃗θ = ∇⃗× ∇⃗ϕ︸ ︷︷ ︸
0

+ ∇⃗× ∇⃗ψ︸ ︷︷ ︸
0

−∇⃗(∇⃗ · ẑψ)−∇2(ẑψ)

= −∇⃗ (∇⃗ · ẑψ)︸ ︷︷ ︸
∇zψ=0

−∇2(ẑψ)

= −∇2(ẑψ),

for which ∇⃗ϕ deals with spin waves while the latter deals with vortice interaction.
From a 2DXY-to-Sine-Gordon picture:

E⃗ = ∇⃗ψ analogy between the electric field and the phase gradient;

∇⃗× E⃗ = 0 since ∇2θ = 0 holds because the field is curl-free outside vortex cores;

∇⃗ · E = ∇⃗2ψ = ρvortices, vortices as sources of the field is analogous to electric charges.
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A.5 A4. Sine-Gordon Connection

Sine-gordon with pertubation in g is

βHsg =

∫
d2x

[
K ′

2

(
∇⃗φ
)2

− g cosφ

]
and so using the discrete summation form of an exponent ex =

∞∑
n=0

xn

n!
and g cosφ =

g

[
eiφ + e−iφ

2

]
if we say Z0

g contains the hamiltonian where g = 0 (i.e., no pertur-

bation) see that

Zsg =

∫
Dφe

−βHsg =

∫
Dφe

−S̃sg

∞∑
N=0

(∫
d2xg cosφ

)N
N !

= Z0
sg

 ∞∑
N=0

(g/2)N

N !

∫ N∏
i=1

d2xi
∑

{mi=±1}

exp

{
−
∫
d2x

K2

2

(
∇⃗φ
)2}

exp

{
i
N∑
i=1

miφ(x⃗i)

}
Z0
sg


= Z0

sg

 ∞∑
N=0

(g/2)N

N !

∫ N∏
i=1

d2xi
∑

{mi=±1}

〈
exp

{
i
N∑
i=1

miφ(x⃗i)

}〉 .

See that 〈
exp

{
i
N∑
i=1

miφ(x⃗i)

}〉

= exp

{
−1

2

∑
α,β

mαmβ ⟨φ(x⃗α)φ(xβ)⟩

}
.

Note for high T

⟨φ(x⃗α)φ(x⃗β)⟩ =
−1

2πK
log |x⃗α − x⃗β| =

−C(x⃗α − x⃗β)

K ′

Zsg

Z0
sg

= ZQ.

So

ZQ,XY =
∑
N

1

(N/2)2!

∫ N∏
i=1

d2xiγ
N exp

{
4π2K

∑
i,j

mimjC (x⃗i − x⃗j)

}

ZQ,SG =
∑
N

(1/2)N

N !

∫ N∏
i=1

d2xi exp

{∑
α,β

C (x⃗α − x⃗β)

2K ′ − g cosφ

}
.
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Clearly

KXY =
1

8π2KSG

.

Thus, the Sine-Gordon model partition function can also be expressed in terms of
a Coulomb gas of charges mi = ±1. Matching parameters shows the equivalence
between the Coulomb gas from the XY vortices and that from the Sine-Gordon
expansion.

A.6 A6. RG Flows via Integrating Out Short-Distance
Pairs

To derive the RG flow, consider small vortex-antivortex pairs of size r ≈ a. When
integrating out these pairs (i.e., coarse-graining from rescaling), the fugacity y and
coupling K change.

One finds for 2DXY RG flows:

dK−1

dℓ
= 4π3y2,

dy

dℓ
= (2− πK)y.

These can be derived by carefully examining how adding a small vortex-antivortex
pair affects correlation functions and by rescaling distances. The crucial steps
involve:

1. Adding a pair of opposite charges at scale a
2. Computing their contribution to correlation functions

3. Rescaling coordinates
4. Matching coefficients to determine how K and y must change to keep the

theory form-invariant.

The details of these steps are well-known but often summarized. Here I will provide
a more explicit derivation below.

Detailed Derivation of RG Equations:

Now to derive one of the KG flows, see that〈
eimϕ(x⃗)e−imϕ(y⃗)

〉
0
= exp

{
−m

2

2

〈
(ϕ(x⃗)− ϕ(y⃗))2

〉
0

}
= exp

{
−m

2

2
2 ∗ 2πK log

|x⃗− y⃗|
a

}
=

(
a

|x⃗− y⃗|

)2πKm2

.

We see there is a scaling dimension of πKm2 for which is relevant under rescaling
if πKm2 < d = 2 and irrelevant if πKm2 > 2 as for less than 2, perturbation be-
comes important and drives the system away from the original unperturbed point
and vice-versa for bigger than 2.
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Effective interaction between test charges

〈
eiϕ(x⃗)e−iϕ(x⃗

′)
〉

say is relabeled as ⟨V (x⃗, x⃗′)⟩ and perturbed with a normalization correction for
which neutrality is conserved with even powers of integration (as odd ones vanish)

⟨V (x⃗, x⃗′)⟩ =
[
⟨V (x⃗, x⃗′)⟩0 + y2

∫
d2yd2y′ ⟨V (x⃗, x⃗′)V (y⃗, y⃗′)⟩0 + ...

]
1 + y2

∫
d2yd2y′ ⟨V (y⃗, y⃗′)⟩0 + ...

≈ ⟨V (x⃗, x⃗′)⟩0
[
1 + y2

∫
d2yd2y′ exp

{
−4πK2C(y⃗ − y⃗′)

}
(exp

(
4πK2D(x⃗, x⃗′, y⃗, y⃗′)

)
− 1) + .

]
.

Note that

⟨V (x⃗, x⃗′)V (y⃗, y⃗′)⟩0 =
〈
eiϕ(x⃗)e−iϕ(x⃗)eiϕ(y⃗)e−iϕ(y⃗

′)
〉
,

= exp

{
−
∑
α<β

⟨ϕαϕβ⟩0mαmβ

}
,

where α = 1, 2, 3, 4 and ⟨ϕαϕβ⟩ = 4π2KCαβ so we have six unique terms the
correlation

C(y, y′)

C(x, x′)

C(y, x′)

C(y′, x)

C(x, y)

C(x′, y′)

topological charges (mα,mβ) = (+,−), (−,+), (−,−), or (+,+) and we define the
interaction between charges

D(x, x′, y, y′) ≡ C(x⃗− y⃗) + C(x⃗′ − y⃗′)− C(y⃗′ − x⃗)− C(y⃗ − x⃗′)

= C(x⃗− R⃗− r⃗

2
) + C(x⃗′ − R⃗ +

r⃗

2
)− C(x⃗′ − R⃗− r⃗

2
)− C(x⃗− R⃗ +

r⃗

2
)

≈ C(x⃗− R⃗)− r⃗

2
· ∇C(x⃗− R⃗) + C(x⃗− R⃗) +

r⃗

2
· ∇C(x⃗− R⃗)

− C(x⃗′ − R⃗) +
r⃗

2
· ∇C(x⃗′ − R⃗)− C(x⃗′ − R⃗)− r⃗

2
· ∇C(x⃗′ − R⃗)

= −r⃗ · ∇⃗C(x⃗− R⃗) + r⃗ · ∇⃗C(x⃗′ − R⃗) +O(r3).

Also see that

exp
{
4π2KD(x, x′, y, y′)

}
−1 ≈ −4π2Kr⃗·∇⃗

(
C(x⃗− R⃗)− C(x⃗′ − R⃗

)
+8π4K2

(
r⃗ · ∇⃗(...)

)2
+O(r3).

Note r is an odd function so under periodic integration∫
d2rr · ∇f(P ) = 0
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so,

⟨V (x⃗, x⃗′)⟩ = exp
{
−4π2KC(x⃗− x⃗′)

}[
1 + 2πy2

∫
drr exp

{
−4π2KC(r⃗)

}
8π4K2r2

1

2
F (x⃗, x⃗′) + ...

]
,

where

F (x⃗, x⃗′) =

∫
d2R

(
∇⃗
(
C(x⃗− R⃗)− C(x⃗′ − R⃗

))2
=

∫
d2R

(
(∇⃗C(x⃗− R⃗))2 − 2∇⃗C(x⃗− R⃗) · ∇⃗C(x⃗′ − R⃗) + (∇⃗C(x⃗′ − R⃗))2

)
=

∫
d2R

C(x⃗− R⃗)∇2C(x⃗− R⃗)︸ ︷︷ ︸
δ(x⃗′−R)

−2C(x⃗− R⃗)∇2C(x⃗′ − R⃗)︸ ︷︷ ︸
δ(x⃗′−R⃗′)

+C(x⃗′ − R⃗)∇2C(x⃗′ − R⃗)︸ ︷︷ ︸
δ(x⃗′−R⃗)


= 2C(x⃗− x⃗′)− 2C(0).

Thus

⟨V (x⃗, x⃗′)⟩ = exp
{
−4π2KC(x⃗− x⃗′)

}
exp

{
16π5K2y2C(x⃗− x⃗′)

∫ ∞

a

drr3
(r
a

)−2πK
}
+O(y3)

≡ exp
{
−4π2KeffC(x⃗− x⃗′)

}
,

where effective stiffness Keff is a renormalized measure of a system’s resistance to
phase fluctuations or deformations, incorporating the effects of thermal fluctuations
and topological defects such as vortices. In systems like the 2D XY model or Sine-
Gordon theory, the bare stiffness K determines the energy cost of phase gradients,
but thermal excitations and defect unbinding reduce this stiffness at larger scales.
Physically, Keff describes how the system’s rigidity changes when observed on
different length scales, reflecting the interplay between order and disorder. Near the
KT tranistion, Keff exhibits critical behavior: it remains finite below the transition
temperature, where vortex-antivortex pairs are bound, but vanishes above it as free
vortices destroy long-range phase coherence. Thus, Keff serves as a key parameter
to understand the system’s macroscopic behavior in the presence of perturbations
or thermal effects. As will be seen later.
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Now see that

Keff = K − 4π3K2y2a2πk
∫ ∞

a

drr3−2πK +O(y4)

= K

(
1− 4π3Ky2a2πK

[
r4−2πK

4− 2πK

]∣∣∣∣la
a

)
− 4π3K2y2a2πK

∫ ∞

la

drr3−2πK +O(y4)

= K

(
1− 4π3Ky2a2πK

[
(la)4−2πK − a4−2πK

4− 2πK

])
− 4π3K2y2a2πK

∫ ∞

la

drr3−2πK +O(y4)

≈ K

(
1− 4π3Ky2a2πK

[
(1 + (4− 2πK)δρ)a4−2πK − a4−2πK

4− 2πK

])
− 4π3K2y2a2πK

∫ ∞

la

drr3−2πK

= K
(
1− 4π3Ky2a4δρ

)
− 4π3K2y2a2πK l4−2πK

∫ ∞

a

dr′r′3−2πK︸ ︷︷ ︸
r→r′l

= K
(
1− 4π3Ky2a4δρ

)︸ ︷︷ ︸
K′

−4π3K2a2πK y2l4−2πK︸ ︷︷ ︸
y′2

∫ ∞

a

dr′r′3−2πK

≈ K
(
1− 4π3Ky2a4δρ

)︸ ︷︷ ︸
K′

−4π3K2a2πK y2(1 + (4− 2πK)δρ︸ ︷︷ ︸
y′2

)

∫ ∞

a

dr′r′3−2πK

For which we’re saying r4−2πK

4−2πK
arises naturally when integrating terms like r3−2πK

over the radial length r as part of coarse-graining (renormalization)
∫∞
a

=
∫ la
a
+
∫∞
la

and a rescaling of r → rl for infinitesimally small logarithmic change δρ so l =
eδρ ≈ (1 + δρ).

See that for a=1,

y′ = y (1 + (2− πK) δρ) ,

K ′ = K
(
1− 4π3Ky2δρ

)
.

Using
dK−1

dρ
= − 1

K2

dK

dρ
we see that after integrating out a small fluctuation, the

vortex frugacity y′ and stiffness K ′ change with scaling as follows

dK ′−1

dρ
= 4π3y2,

dy′

dρ
= (2− πK) y.
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A.7 A7. Invariance and Flow Lines

Let’s define x = K−1 − π

2
, where near the critical point x ≈ K−1, so that

K =
1

K−1

=
1

π

2
+ x

=
1

π

2

(
1 +

2x

π

)
=

2

π

(
1 +

2x

π

)
≈ 2

π

(
1− 2x

π

)
.

So,

dy

dρ
≈
(
2− π

(
2

π

(
1− 2x

π

))
y

=

(
2−

(
2

(
1− 2x

π

)))
y

=
4xy

π
.

Now see that

d

dρ

(
x2 − π4y2

)
= 2x

dx

dρ
− 2π4y

dy

dρ

= 2x
dK−1

dρ
− 2π4y

[
4

π
xy

]
= 2x4π3y2 − 2π4y

[
4

π
K−1y

]
= 8K−1π3y2 − 8π3y2K−1

= 0.

So (
x2 − π4y2

)
= C,

where C is a constant.

Thus, the RG flows follow hyperbolas in the (x, y) plane as seen in Figure 3. One
fixed line is y = 0, K > 2/π. At K = 2/π, y is marginal. For K < 2/π, y flows to
larger values, indicating proliferation of vortices.
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Figure 3: Simplified KT RG flow for C>0, C<0
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